Skip to main content

Rectangular Micro-Strip Patch Antenna

RECTANGULAR MICRO-STRIP PATCH ANTENNA


Micro-strip is a type of electrical transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. It consists of a conducting strip separated from a ground plane by a dielectric layer known as the substrate.

In telecommunication, a microstrip antenna (also known as a printed antenna) usually means an antenna fabricated using micro-strip techniques on a printed circuit board (PCB).[1] They are mostly used at microwave frequencies. An individual microstrip antenna consists of a patch of metal foil of various shapes (a patch antenna) on the surface of a PCB, with a metal foil ground plane on the other side of the board. Most micro-strip antennas consist of multiple patches in a two-dimensional array. The antenna is usually connected to the transmitter or receiver through foil micro-strip transmission lines. The radio frequency current is applied (or in receiving antennas the received signal is produced) between the antenna and ground plane. Micro-strip antennas have become very popular in recent decades due to their thin planar profile which can be incorporated into the surfaces of consumer products, aircraft and missiles; their ease of fabrication using printed circuit  techniques; the ease of integrating the antenna on the same board with the rest of the circuit, and the possibility of adding active devices such as microwave integrated circuits to the antenna itself to make active antennas.

#Rectangular #Microstrip

#knowledge #stream #blog

Download pdf file with step by step details. Click Here 

Download the ANSYS Electronics Desktop File: Click Here


#Rectangular #patch #antenna #HFSS #ANSYS #Electronics



Popular posts from this blog

Rectangular Microstrip Patch Antenna

Microstrip is a type of electrical transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. It consists of a conducting strip separated from a ground plane by a dielectric layer known as the substrate. The most commonly employed microstrip antenna is a rectangular patch which looks like a truncated  microstrip  transmission line. It is approximately of one-half wavelength long. When air is used as the dielectric substrate, the length of the rectangular microstrip antenna is approximately one-half of a free-space  wavelength . As the antenna is loaded with a dielectric as its substrate, the length of the antenna decreases as the relative  dielectric constant  of the substrate increases. The resonant length of the antenna is slightly shorter because of the extended electric "fringing fields" which increase the electrical length of the antenna slightly. An early model of the microst...

Prepare Data for Exploration : weekly challenge 1

Prepare Data for Exploration : weekly challenge 1 #coursera #exploration #weekly #challenge 1 #cybersecurity #coursera #quiz #solution #network Are you prepared to increase your data exploration abilities? The goal of Coursera's Week 1 challenge, "Prepare Data for Exploration," is to provide you the skills and resources you need to turn unprocessed data into insightful information. With the knowledge you'll gain from this course, you can ensure that your data is organised, clean, and ready for analysis. Data preparation is one of the most important processes in any data analysis effort. Inaccurate results and flawed conclusions might emerge from poorly prepared data. You may prepare your data for exploration with Coursera's Weekly Challenge 1. You'll discover industry best practises and insider advice. #answers #questions #flashcard 1 . Question 1 What is the most likely reason that a data analyst would use historical data instead of gathering new data? 1 / 1...

Cracking Passwords Using John the Ripper: A Complete Step-by-Step Guide

Cracking Passwords Using John the Ripper: A Complete Step-by-Step Guide In today's post, we’re diving into a practical lab exercise that shows how to use John the Ripper, one of the most effective password-cracking tools in cybersecurity. Whether you're an IT professional or a cybersecurity student, mastering John the Ripper will help you understand password vulnerabilities and enhance your penetration testing skills. Lab Objective: The goal of this lab is to crack the root password on a Linux system (Support) and extract the password from a password-protected ZIP file (located on IT-Laptop). Both tasks are performed using John the Ripper. Steps to Crack the Root Password on Support: Open the Terminal on the Support system. Change directories to /usr/share/john . List the files and open password.lst to view common password guesses. Use John the Ripper to crack the root password by running john /etc/shadow . Once cracked, the password is stored in the john.pot file for future u...