Skip to main content

Frequency

Examples of these electromagnetic waves include the light from the sun and the waves received by your cell phone or radio.



All electromagnetic waves propagate at the same speed in air or in space. This speed (the speed of light) is roughly 671 million miles per hour (1 billion kilometers per hour). This is roughly a million times faster than the speed of sound (which is about 761 miles per hour at sea level). The speed of light will be denoted as c in the equations that follow. We like to use "SI" units in science (length measured in meters,time in seconds,mass in kilograms), so we will forever remember that 3 * 10^8 m/s

A traveling electric field has an associated magnetic field with it, and the two make up an electromagnetic wave.

The spatial variation is given in Figure 1, and the the temporal (time) variation is given in Figure 2.


A Sinusoidal Wave plotted as a function of position.

A Sinusoidal Wave plotted as a function of time.

                       
The frequency (written f ) is simply the number of complete cycles the wave completes (viewed as a function of time) in one second (two hundred cycles per second is written 200 Hz, or 200 "Hertz").

The speed that the waves travel is how fast the waves are oscillating in time (f ) multiplied by the size of the step the waves are taken per period (wavelength).



Basically, the frequency is just a measure of how fast the wave is oscillating. And since all EM waves travel at the same speed, the faster it oscillates the shorter the wavelength. And a longer wavelength implies a slower frequency.



Popular posts from this blog

Cyber Attack Countermeasures : Module 4

 Cyber Attack Countermeasures :  Module 4 Quiz #cyber #quiz #coursera #exam #module #answers 1 . Question 1 CBC mode cryptography involves which of the following? 1 / 1  point Mediation of overt channels Mediation of covert channels Auditing of overt channels Auditing of covert channels None of the above Correct Correct! CBC mode is specifically designed to close covert communication channels in block encryption algorithms. 2 . Question 2 Which is a true statement? 1 / 1  point Conventional crypto scales perfectly well Conventional crypto scales poorly to large groups Conventional crypto does not need to scale All of the above Correct Correct! The symmetric key based method inherent in conventional cryptography does not scale well to large groups. 3 . Question 3 Public Key Cryptography involves which of the following? 1 / 1  point Publicly known secret keys Publicly known private keys Publicly known public keys All of the above ...

Cyber Attack Countermeasures : Module 2 Quiz

Cyber Attack Countermeasures: Module 2 Quiz #cyber #quiz #course #era #answer #module 1 . Question 1 “Identification” in the process of authentication involves which of the following? 1 / 1  point Typing a password Keying in a passphrase Typing in User ID and password Typing in User ID None of the above Correct Correct! The definition of identification involves providing a user’s ID (identification). 2 . Question 2 Which of the following statements is true? 1 / 1  point Identifiers are secret Identifiers are not secret Identifiers are the secret part of authentication All of the above Correct Correct! Identifiers for users are generally not viewed by security experts as being secret. 3 . Question 3 Which of the following is not a good candidate for use as a proof factor in the authentication process? 1 / 1  point Making sure the User ID is correct Typing in a correct password Confirming location, regardless of the country you are in The move...

Rectangular Microstrip Patch Antenna

Microstrip is a type of electrical transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. It consists of a conducting strip separated from a ground plane by a dielectric layer known as the substrate. The most commonly employed microstrip antenna is a rectangular patch which looks like a truncated  microstrip  transmission line. It is approximately of one-half wavelength long. When air is used as the dielectric substrate, the length of the rectangular microstrip antenna is approximately one-half of a free-space  wavelength . As the antenna is loaded with a dielectric as its substrate, the length of the antenna decreases as the relative  dielectric constant  of the substrate increases. The resonant length of the antenna is slightly shorter because of the extended electric "fringing fields" which increase the electrical length of the antenna slightly. An early model of the microst...