In 5G communication systems, the phased-array antenna is one of the lead front-end components that defines massive multiple-input, multiple-output (MIMO) performance. The trend outlined in recent years involves providing a robust and complete platform/wizard for RF/microwave engineers to develop more capable antennas and other RF front-end components in less time than before.1 In addition, systems that operate at millimeter-wave (mmWave) frequencies offer benefits that include small antenna sizes and more available bandwidth.2
However, a challenge arises due to the wide variety of application-driven requirements, which encompasses everything from both city and rural environments to realized gain, scan, and polarization performance attributes to impedance matching and more. Such an extensive number of requirements cannot be met by a single and one-time designed element. This means that any practically convenient modeling platform must contain an extensive library of predesigned antenna elements.
Unfortunately, 5G antennas belong to a class of relatively small and densely populated phased arrays in which the total number of radiators typically does not exceed several hundred. If it does, the consistency of results obtained through such system-level platforms ultimately depends on the accuracy of the phased-array element models, which should include the relatively strong mutual coupling with other elements in the array (this mutual coupling can be −15 dB or 0.18 V relative to 1-V element excitation and sometimes even higher).
To date, the antenna-array block of numerous platforms avoids the associated challenges by using data from either a single radiator simulation/test in free space (meaning all elements are identical and mutual coupling is ignored) or a low-complexity and memory-consuming Floquet-Bloch technique. The latter assumes that all radiators are set in an infinite array and are thus identical, since each element is mutually coupled with the same infinite number of driven neighbors. We will demonstrate why both approaches have limited accuracy and how to overcome them
Video Tutorial: https://youtu.be/OcoH50vquEs
CST Files: https://drive.google.com/drive/folders/1LJEgSTFlYG9OTvCcRSTR2ZLkYPphuTGO
#HFSS #CST #Antenna #5G #array #tutorial
Comments